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Abstract— This paper describes a theoretical analysis of the combined heat and mass transfer process taking
place in the absorption of a gas or vapor into a laminar liquid film. The energy and diffusion equations are
solved simultaneously to give the temperature and concentration variations at the liquid—gas interface and at
the wall. Two cases of interest are considered : a constant temperature and an adiabatic wall. The Nusselt and
Sherwood numbers are found to depend on the Peclet and Lewis numbers as well as on the equilibrium
characteristics of the working materials.
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NOMENCLATURE

coefficients in equations {13a) and (13b);

, coefficients in equations (19) and (20);
concentration of absorbatein solution [mol
m ™3 solution];
equilibrium concentration of solution at
temperature T, with vapor at pressure P,
[mol m~? solution];
interfacial concentration of absorbate in
solution {mol m~3 solution];
initial concentration of absorbate
solution [mol m ~3 solution];
constants in equation (11);
specific heat of liquid [J kg™ ! °C~'7;
diffusion coefficient of absorbate (substance
ID) in solution [m2 s~ 17;
eigenfunctions in equations (13a)and (13b);
heat of absorption of substance II in
solution [J mol ™ 1];
partial molal enthalpy of substance IT at
interface [J mol™1];
mass transfer coefficient from interface to
bulk [ms~'];
heat transfer cocfficient from interface to
bulk [Wm~™2°C™17;
heat transfer coefficient from bulk to wali
[Wm™2°C™];
enthalpy of vapor in contact with film
[Jmol™7;
thermal conductivity of liquid [W m™!
CTY
Lewis number, D/x;
mass flux of absorbate into absorbent at
interface [mol m~2s71];

in

Nu, N/, Nusselt numbers, htA/D and hpA/D;

Pe,
P

'

Pv()’

Gw
Sh,
T’

Peclet number, 4A/x;

vapor pressure of absorbate (substance II)
in the gas phase [Pa];

vapor pressure of absorbate (substance II)
in solution at concentration C, and
temperature T, [Pa];

normalized heat flux, [06/0n],-,;
Sherwood number, hyA/D;

temperature of solution [°C];
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T., equilibrium temperature of solution at
concentration C,, with vapor at pressure P,
[°Cl;

T, interfacial temperature of solution [°C];

T, initial temperature of solution [°C];

u, flow velocity [ms™1];

i, average flow velocity [m s~ 1];

v, normalized velocity, equation (6);

X, coordinate in direction of flow [m];

¥, coordinate in direction perpendicular to
flow [m].

Greek symbols

o, thermal diffusivity of liquid [m? s~ 1];

o, B,, eigenvalues in equations (13a) and {13b);

s normalized concentration, equation (6);

¥» Pws 7. normalized concentration at interface, wall
and bulk, respectively;

A, film thickness [m];

L, normalized coordinate in direction of flow,
equation (6);

1, normalized coordinate perpendicular to
flow, equation (6);

M1, (1—n), equation (27);

0 normalized temperature, equation (6);

0,,9,,8, normalized temperature at interface, wall
and bulk, respectively;

A, normalized heat of absorption, equation
(10);

s, normalized mass flux at interface, equation
(10);

o density of liquid [kg m ~%].

1. INTRODUCTION

ABSORPTION of gases and vapors in liquids are
encountered in numerous applications in the chemical
technology. These processes normally involve simul-
taneous heat and mass transfer in the gas-liquid system.
The heat of absorption gives rise to temperature
gradients leading to the transfer of heat; the
temperature  influences the vapor pressure—
concentration equilibrium between the two phases
which in turn affects the exchange of mass.
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The combined heat and mass transfer process does
not lend itself easily to mathematical analysis. Many
studies of absorption problems described in the
literature have considered the heat and the mass
transfer separately, neglecting the coupling between
them. Fortunately, in many real cases the heat
interaction is small and the process may be considered
isothermal. In some processes, however, the effect of
heat transfer is important and cannot be neglected. A
typical example is when the absorbate is a vapor with
high heat of absorption, such as water. Furthermore,
there is growing interest in processes where mass
transfer is initiated specifically to produce a
temperature change. One such example, from which the
present study originated, is in absorption heat pumps
for heating and cooling. There, the heat transfer
accompanying the mass transfer is of primary
importance.

The gas -liquid contactors in which absorption takes
place are typically spray, trayed, or packed towers. Of
particular interest are systems involving falling liquid
films, which have found wide application in modern
equipment. A considerable number of studies have
been performed on gas absorption in liquid films with
different flow regimes, geometries, and boundary
conditions. Chien and Ibele [ 1] gave a comprehensive
survey on the hydrodynamics of falling films. Vyazovoy
[2] formulated, as early as 1940, a simple model for
isothermal absorption in a falling film, which was
shown by comparison with experimental results to
provide rough estimates for the mass transfer
coefficients. Improved and more elaborate models have
been developed since. Olbrich and Wild [3] provided a
solution to the diffusion equation in laminar flow for
several falling film geometries. The solution, in the form
of a series of eigenfunctions, includes ten eigenvalues
and coefficients. Rotem and Neilson [4] added to the
laminar solution the diffusion in the direction of flow,
which turns out to be negligible for large enough Peclet
numbers. Tamir and Taitel [5] extended the laminar
flow solution to cases involving interfacial resistance.
Chavan, Mechelkar and Karanth [6, 7] considered
absorption in non-Newtonian liquids. Sandall and co-
workers [8--10] studied turbulent flows. The common
feature to all the above studies is their dealing with mass
transfer only, under conditions where heat transfer has
no effect.

Only recently has some work been published on
combined heat and mass transfer in falling films. Yih
and Seagrave [11] analyzed a laminar flow problem
and studied the effect of a temperature gradient on the
absorption process. Neglecting temperature variations
in the direction of flow, they essentially assumed a linear
temperature profile across the film thickness. The
temperature variation in their model influenced the
process through its effect on the physical properties of
the liquid. Nakoryakov and Grigor’eva [12] used a
similar approximate approach and assumed also a
linear temperature profile across the film. However, in
their model temperature variations in the direction of
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flow were not neglected. Two later and improved
models [13, 14] by the same authors calculated, rather
than assumed, the actual shape of the temperature
profile, which led to more accurate results. In ref [13]
an eigenfunction series solution is given for the coupled
diffusion and energy equations with an impermeuble.
constant temperature wall and an  cquilibrivm
boundary condition at the liquid-vapor interface. Ia
ref. [14] an analytic solution was obtained for the
temperature and concentration variation near the
entrance region. The main limitation of the models [ ! 3.
147 is their being based on the assumption of a uniform
velocity profile in the film, whereas the actual velocity
profile in laminar flow is parabolic. This assumption
leads to a deviation of about 20°%; in the heat and mass
transfer coefficients and to underprediction by about
40, of the distance required for boundary layes
development. Also, the models [ 13. 4] are restricted to
a constant temperature wall.

This paper presents an attempt to improve upon the
models described earlier and eliminate some of thewr
limitations. The model, for a falling tilm of absorbent
solution in laminar flow, aims at the calculation of the
heat and mass transfer coefficients for typical wall
conditions and finding their dependence on the
system’s parameters.

2. MODEL AND EQUATIONS

The system analyzed in the present study is described
schematically in Fig. 1. A film of liquid solution.
composed of substances 1 (absorbent) and i
(absorbate), flows down over an inclined plane,
Substance 1 always remains in the liquid phase;
substance [ may be absorbed inte the solution. The
film is in contact with stagnant vapor of substance I at
constant pressure P,. At x = 0, theliquid solutionisut &
uniform temperature T and composition C, (moles of
I1 per unit volume of solution) corresponding to an
equilibrium vapor pressure P, different from P, As 4
result of this difference, a mass transfer process takes
place at the liquid—vapor interface. The substance
absorbed at the interface diffuses into the film; the heat
generated in the absorption results in a simultaneous

VAPOR OF SUBSTANCE II
AT CONSTANT PRESSURE -,

LIQUID —
SOLUTION

OF SUBSTANCES
T ANDIL

FiG. 1. Description of falling film of absorbent in contact with
absorbate. Typical profiles of velocity. temperature. and
concentration are shown.
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heat transfer process. Two cases of practical interest are
considered: in one, the wall is kept at a constant
temperature Ty ; in the other, the wall is adiabatic.
The flow of the liquid film is assumed in this study to
be laminar, 1-dim., and fully developed throughout. No
shear forces are exerted on the liquid by the vapor. The
film thickness can be easily determined from the mass
flowrate, density, viscosity, and angle of inclination [ 1].
The velocity profile, shown in Fig. 1, is parabolic and

given by
O] o

where # is the average flow velocity, equal to the mass
flow rate per unit breadth, divided by the density and
film thickness.

Informulating this model, the following assumptions
have been made:

(1) Theliquid solution is Newtonian and its physical
properties are constant and independent of tempera-
ture and concentration.

{2) Themass of vapor absorbed per unittime is small
compared to the mass flow rate of the liquid. Therefore,
it is assumed that the latter is constant, and so are the
film thickness and average flow velocity.

(3) There is no heat transfer in the vapor phase.

(4) Thereareno natural convection effectsin the film
due to temperature or concentration differences (this
assumption is in fact a corollary of the first one).

(5) Diffusion thermal effects are negligible.

{6) Vapor pressure equilibrium exists between the
vapor and liquid at the interface.

Under the above assumptions, the simultaneous heat
and mass transfer in the system at steady-state is
described by the energy and diffusion equations:

oT T

Yax Tiam @
oC a*C

Yo TP @

where diffusion and heat conduction in the x-direction
have been neglected with respect to those in the y-
direction, The following boundary conditions apply:

T=T, and C=C, at x=0, (4a)
oc _o
dy
T=T, for constant temperature aty =0,
or wall
dT/3y = 0 for adiabatic wall
(4b)
T=T and C=C; at y=A (4c)

Here T; and C, are the interfacial temperature and
concentration, both unknown functions of x. They are
related to each other and to the interfacial mass flux »;,
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also unknown, by the following three conditions:

F(T,C) = P, = const,, (5a)
D(0C/oy) = n; at y=A, (5b)
k(@T/dy) = mH(T,C) at y=A (5¢)

where H, is the heat of absorption (per mole of the
vapor) in the liquid. Equation (5a) represents the
condition of vapor pressure equilibrium at the
interface ; equations (5b) and (5c) describe the mass and
heat fluxes, respectively, at the interface. The heat of
absorption is defined as

ga = Eﬂ - gﬂ(cis ’I;) (Sd)

where By is the enthalpy (per mole) of the vapor in
contact with the film and Hy is the partial molal
enthalpy of substance IT at the interface. Hyis a function
of the interfacial temperature and concentration
whereas by is independent of them. The definition (5d)is
more rigorous than the one sometimes found in the
literature, where H, is expressed in terms of the latent
heat of vaporization/condensation of substance IT at
temperature 7, less the differential heat of dilution. This
definition would be correct if the vapor was saturated at
a temperature equal to that of the liquid interface. This
is generally not the case, nor is it so in the present
problem.

The typical shapes of the temperature and
concentration profiles in the film are depicted in Fig. 1.
Before proceeding with the solution, it would be useful
to rewrite the equations in a dimensionless form. Let us
define the new variables

1 x ¥
“Theat TTw (6
v =i = 32n—n?), (6)
T—1T, Cc-C,
9-‘—': ; i
-7, '~ c.~C, (6c)

where T, is the equilibrium temperature of the solution
at concentration C, with the vapor, and C, is the
concentration of the solution at temperature T, in
equilibrium with the vapor. 7, and C, both have a
physical significance: 7, is the temperature which
would be reached in the film if thermodynamic
equilibrium could be achieved without change in
concentration; C, is the concentration that would be
reached if thermodynamic equilibrium could be
achieved without change in temperature. Both are
limiting cases to what actually happens in the
simultaneous heat and mass transfer process.

Equations (2) and (3) with the new dimensionless
variables become

o0 %0

vﬁ_C = P @]
dy &y

Yot = Lo g ®

where Le is the Lewis number. The boundary
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conditions now have the dimensionless form

=0 and y=0 at (=0, (9a)
ay )
=0 [
N

ty =
=0 for constant temperature aty =0,
or wall
a0/0n = 0 for adiabatic wall
{(9b)
=0, and y=19;, at =1 (9¢)

where 0; and 7y; are the dimensionless interfacial
temperature and concentration, both unknown
functions of {, which are related to each other as
follows:

f(0..v) =0 (equilibrium condition), (10a)
Ty A at =1 (10b)
an ' D(C,—Cy) ’
c0 A(c,—cC
(: = a0 7) = wle o ‘EJ
on pe(T.—To)

at =1 (10c)

Here g is the dimensionless mass flux from the vapor to
the film and 4 is the dimensionless heat of absorption,
which is a function of 0; and 7,.

The problem is now well defined mathematically in
terms of the two second order differential equations (7)
and (8) and the boundary conditions (9) for the
unknown distributions of 0 and y with { and #. The
boundary conditions are given in terms of two
additional unknowns, 6; and y,, which are determined
along with y; from the three additional equations (10).

As has been stated earlier, the two cases for which the
present model was developed (constant temperature
and adiabatic wall) are of practical interest in actual
working systems. The former simulates a process where
the liquid is constantly cooled during absorption, such
as in absorption chillers and heat pumps. The other is
representative of a case where this process occurs
without cooling, such as in many gas-liquid contactors.
We have assumed here that the constant temperature
wallis at a temperature T, equal to that of the entering
solution. If this is not the case, the results will vary
somewhat due to an additional pure heat transfer
process between the wall and the film near the entrance
region [ 147]. Also, the adiabatic wall may be considered
as a particular case of the more general constant heat
flux condition.

3. THE LINEAR ABSORBENT

In order to proceed with the solution, it is necessary
to know the equilibrium relation between the
temperature, composition, and vapor pressure of the
specific liquid absorbent being used. This relation,
expressed in a dimensionless form for the parameters at
the interface, yields equation (10a). In addition, it is
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necessary to express the dimensionless heat of
absorption Ain terms of 6, and y; for the given materials.
Data on cquilibrium properties have been compiled
from experimental and theoretical studies and are
available in the literature for many liquid- vapor
combinations.

A universal relation between the temperature,
concentration, and vapor pressure in equilibrium can
be formulated which would fit a large number of
absorbents within a limited range of the preceding
parameters. This relation indicates a linear dependence
between the temperature, the concentration, and the
logarithm of the vapor pressure. A thermodynamic
justification for this relation, limited to electrolytic
solutions, has been given [157], and was based on the
definition of the osmotic coefficient and the Clapeyron
equation. However, similar behavior is exhibited by
some other, non-electrolytic, absorbents. The validity
of the linear relation was checked for two common
absorbents, LiBr-H,0 and LiCl-H, O, and found to be
very good under the above limitations for a wide range
of temperatures and concentrations.

The heat of absorption has been defined as the
difference between the enthalpy of the vapor iy and the
partial molal enthalpy of substance H in the liquid 1,
[equation (5d)]. hy,, which is independent of the
interfacial temperature and concentration, is often
considerably larger than Hy,. Thisis so particularly with
vapor of low molecular weight such as H,O. In thosc
cases, the dependence of 4 on 6; and 7, is very weak.

We will define a linear absorbent as a material having
the following two properties:

(1) The relation between the temperature and
concentration in equilibrium with vapor at constant
pressure is linear, of the form:

C=CT+C. (n

and

(2) The heat of absorption is constant and
independent of the temperature and concentration.

In terms of the dimensionless variables defined in
equations (6¢) and (10c), these two conditions become

t—, {11a)

and

4. = const. {11b}

4. SOLUTION

Two different methods of solution were used to
obtain the temperature and concentration distri-
butions in the film: an analytical and a numerical
method. A linear absorbent was assumed in both cases,
and the results of the two methods were in excellent
agreement. The equationsin effect are equations(7) and
(8) with the boundary conditions (9a) and (9b) at the
entrance plane and the wall, respectively. The condition
(9c) at the interface becomes, for the case of a linear
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absorbent,

0 0
and 2= at y=1. 2
on  on

0+y=1

4.1. Analytical solution
The approach to the solution is similar to the one
employed in ref. [13] for the case with the uniform
velocity profile. Using the Fourier method, we write a
separation-of-variables solution for equations (7) and
(8),in the form of two infinite series of eigenfunctions, as
follows:
0=Y A,F,(ne "% (13a)

n=1

y=1=Y B,G,me (13b)

n=1
where a, and §, are the eigenvalues corresponding to
the eigenfunctions F, and G, respectively. The
boundary conditions (12), which must be satisfied at
any {, indicate that for every n,

oy = ﬂn'

Substituting equations (13a) and (13b) into equations
(7)and (8), we obtain the following two equations for the
eigenfunctions:

2

F
: +%(2’7_712)“3Fn = Oa

14

ar (14
2 2
G, s

" 4+30n—n)2G, =0, 15

dr’z +2('7 ’7)[ n ( )

with the boundary conditions at the wall, resulting from
equations (9b):
G, 0)=0 (16a)

F, (0} = 0 for adiabatic wall, or F(0) = 0 for constant
temperature wall. (16b)

Another boundary condition to be satisfied by
equations(14) and (15)is condition (12) at the interface,
which yields

A,F(1) = B,G,{1),
A,Fi(1) = —iB,G1).

n

(17a)
(17b)
Wenote that equations (17a)and (17b)for A, and B, are

homogeneous and have a solution only if the
determinant equals zero, i.e. if

EQ _ 60
F (1) G,(1)

which is the condition for determining the eigenvalues
a, once a solution is obtained for F, and G,. The
coefficients A, and B, can then be determined from the
boundary condition (9a) by means of a Sturm-Liouville
orthogonality condition at { = 0.

A power series solution to equation (14) may be
written in the form

(18)

ap ' (19)

M

Fom) =

i

il

0

where, using the boundary condition (16b), we find

Qno = 1 Ay, = 0, Ay = 0, a,; = —0(3/2
for adiabatic wall

Ap0 = 0, a,1 = 1, Apo = 0, Ay 3 = 0

for constant temperature wall (19a)

i = 300 (@ -4 =20, 3)/ili—1)
for i = 4, both types of wall.

Similarly, the solution to equation (15) may be written
as

Gn(”) = Z bn,ir’i (20)
i=0

where we find, with the aid of boundary condition (16a),
bn,O = la bn,l = 0’ bn,2 = 03 bn,3 = —af/zl‘e

_ 3 CZ_,% (bn,i—4_2bn,i—3)

> for i>4. (20
T3 Le  ii-1) or iz4. (02)

The eigenvalues are the roots of equation (18). An
algorithm may therefore be employed where a guessed
value of a, is used in equations (19a) and (20a) to
calculate the terms of the series a, ; and b, ;, and, hence,
the eigenfunctions F,(1) and G,(1). The results are then
substituted into equation (18). If the latter is not
satisfied, a different guess is taken until convergence is
obtained.

Table 1 lists the first nine eigenvalues for a set of
typical values of the parameters, Le = 0.001 and
A=0.01. The table also shows the corresponding

Table 1. Eigenvalues and coefficients for typical values of the parameters: A = 0.01, Le = 0.001

Adiabatic wall Constant temperature wall

n ®, A, B, o, A, B,

1 0 0.90909 0.90909 0.05765 0.026696 1.3373
2 0.10225 —0.14691 0.18984 0.16052 0.025699 —0.54334
3 0.19871 —-0.12830 —0.19710 0.26269 0.026061 0.35597
4 0.29605 —0.10555 0.19098 0.36464 0.026789 —0.26809
5 0.39449 —0.08459 —0.17902 0.46640 0.027817 0.21567
6 0.49385 —0.06756 0.16558 0.56793 0.029115 —0.17983
7 0.59395 —0.05439 ~0.15237 0.66916 0.030765 0.15338
8 0.69463 —0.04435 0.14006 0.76997 0.032680 —0.13206
9 0.79574 —0.03667 —0.12886 0.87079 0.035054 0.12027
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coefficients A, and B,, which must be calculated to
complete the solution. In order to do this, we have to
formulate an orthogonality condition at{ = 0, which s
of the Sturm-Liouville type, yet somewhat different
from the standard form of the latter due to the coupled
boundary condition (12).

Consider equation (14) for the eigenfunction F,;
multiplying it by another eigenfunction F, and
integrating over the range of # yields

1 1
iafj (2n—n*)F,F, dn = “J F,Fy dn

[ 9]
1
:Fm(O)F;(O)—Fm(l)F;UHJ F,F,dn, (21a)
[4]
similarly

1
Jop, J (2n—n*)F,F, dy
0

1

= F(0)F,(0)—F (1)F( )+j F.F, dn. (21b)

o

Subtracting equation (21b) from equation (21a) and
using the boundary condition (16b), we obtain

1

0
= F(DF,(1)—- F()F(1).
Repeating the same with equation (15) for the

eigenfunction G,, we find

3
2Le

(22a)

1
(d —_am)J' (zn_nz)GnGm dr]

= G(1)G,(1) - Gu(1)G,(1).

At this point we introduce the coupling between the
equations, which is where the present orthogonality
condition differs from the conventional. From
equations (17a) and (17b)

FADF(1)—F,(DF(1)

(22b)

I
!

[G,.(l)G (D= G.(DG(1)]

n

using this condition to combine equations (22a) and
(22b) finally yields

1
(ot — %) J n—n?)
4]
x (Le A,A,F,F,+ AB,B,G,G,)dn =0 (23a)

which may be written as

1
j’ (2’1_'12)(148 AnAanFm
0

=0 for n # m, (23b)
# 0 for

n=m.

+4B,B,G,G,)dn {

It should be noted that this type of “coupled”
orthogonality condition had been developed and used
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earlier in a problem involving sublimation in a duct
[16].

We now return to the boundary condition (9a) and
using equation (13) we find

Y AF ) =

n=1

0 and Y BGm=1 (24
n— i

therefore,

Z J 2n—n*MLe A,AF,F,,

~1
+4B,B,.G,G,)dn :J (2n—1%)iB,G,, dn (25

0

using the orthogonality condition (23b)

1
f (@n—r)Le AZF2 + AB2G)dn
0

1
:J (2n—n*)4B,G, dn, (25a)

]
which provides one relation between 4, and B,: a
second relation is available in either equation (17a) or
(17b). Solving equations (25a) and (17a) for 4, and B,

yields
1
K
0

annz)(r (n)dny

B =—— S A 26:
n s Gz(l) ( 6d)
2n n*)| Le 2 F2()+ AG2(n) |d
0 Fi(1)
_pg &b -
n= B F ) (26b)

The analytical solution is now complete. The
algorithm mentioned earlier makes it possible to obtain
the first few eigenvalues* from equation (18) without
difficulty for most values of interest of the parameters.
This is sufficient for an accurate calculation of 8 and
for moderate and large values of { due to the
exponential terms in equation (13). For small values of
¢, however, a large number of eigenvalues is required.
The recursive formulas (19a) and (20a) turn out to be
unstable for large values of ¢, and it is increasingly
difficult to obtain convergence of the series (19) and (20)
for the eigenfunctions. An alternative method for
obtaining the eigenvalues is through a numerical
integration of equations (14) and (15). Rather than
doing this, it was found moreefficient to use a numerical
method for solving the original equations (7) and (8) in
their partial differential form, which will be described
next. Yet, the analytical eigenvalue solution is very
useful for a wide range of the parameters Le and /.
where enough eigenvalues can be calculated to cover a
considerable range of {. For the small (s, a similarity
solution has been obtained similar to the one in rel.
[14], which will also be described over.

* The sequence of the eigenvalues is such that a higher n
corresponds to a larger value of o,
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4.2. Numerical solution

The numerical technique used to solve the partial
differential equations (7) and (8) was based on the so-
called “method of lines” or “semi-discretization” [17].
The (- plane of the film was divided into thin strips by
means of lines parallel to the { axis. This discretization
of the x-coordinate made it possible to express the
second order derivative with respect to  in each of the
equations in a finite-difference form. Thus, a first order
ordinary differential equation, in { alone, was obtained
along each line. Such an equation could be readily
solved by means of an available ODE integrator using
the boundary condition (9a). The integrator selects
automatically the required step in { and varies it as
necessary as the integration proceeds.

Some difficulty in applying this numerical method to
the entire domain resulted from a singularity at the
point{ = 0,5 = 1. This is a singularity of the type often
encountered in boundary layer problems, and is due to
a discontinuity in the temperature and concentration
between the interface and the entrance plane at this
point. To overcome this problem, an analytical
solution applicable close to the singular point was
developed, which made it possible to calculate the
values of the variables at some finite distance away from
the point and begin the numerical solution from there.
The analytical solution is similar to the one used in ref.
[13] and will be described briefly here.

By defining a new variable

ny=1-n @n

and recognizing that the term (25 —#%} is very close to
unity near the singular point, we can rewrite equations
(7) and (8) as

308 8%

I (28)
3 ay &y
25 Mo *

with the boundary conditions {9b) and (12) now
applying at 7, — oo and 5, = 0, respectively. It is then
possible to find a similarity variable, combining both {
and n,, for each of the equations and convert them from
partial to ordinary ones. Using the common similarity
technique, equation (28) becomes

d2o do

= 27

&2 By (28a)
where z =#,/(8(/3)'/2. Equation (28a) may be
integrated twice to give

0 =k, erf(z)+k, = ky erf[,/(8/3)'/*]+k,. (28b)
In a similar manner we find from equation (29)
y = ky erf[n,/8Le {/3)' ]+ k, (29a)

where ky, k,, ky, and k, are constants of integration.
Applying the boundary condition (9a) yields k; = —k,
and k3 = —k, since erf(eo)=1. The boundary
condition (9b) is satisfied automatically for both the

adiabatic and constant temperature walls. Then,
applying the boundary condition (12) yields k; + k; =
—landk, = Aky/(Le’*)from which all the constants of
integration can finaily be determined. We thus obtain
the following expressions for the dimensionless
temperature and concentrations, in terms of the
original variables

A 3(1 _n)z 172
Le'’?

3(1_ )2 12
=m{l—erf[——§££} } 31

which are valid for small {, for both the adiabatic and
constant temperature wall cases. This is to be expected,
since the effect of the wall cannot be felt until the
boundary layer developing from the interface has had
enough distance to fill the entire film thickness.

The similarity solution for small { has made it
possible to use the numerical technique described
earlier and overcome the problem associated with the
discontinuity at the point { = 0, = 1. In addition, this
solution is used to complement the eigenvalue solution
whose usefulness at small { was limited by the number
of obtainable eigenvalues.

Y

5. RESULTS AND DISCUSSION

Figures 2 and 3 describe the general behavior of the
temperature and concentration in the system as they
vary with the normalized length {, for a typical set of
values of the parameters Leand 4. Curvesare given for
and y at the wall, (0, 7.}, the liquid bulk, (8, ), and the
liquid-vapor interface, (0;, ;). The solid lines describe
the results for the constant temperature wall and the
broken lines for the adiabatic wall. This notation will be
maintained for the rest of the curves in this section.

Initially, for very small {, the behavior is the same for
the adiabatic and constant temperature wall cases. The
liquid at the interface reaches thermodynamic
equilibrium with the vapor immediately upon contact
at { =0, but it takes some distance for the effect to
diffuse into the film and be felt at the wall
Consequently, 8, and y,, remain essentially zero for
small { while §, and y, remain almost constant at their
initial values reached at { = 0. These values are
M(A+Le'®y and Le'?/(A+ Le'’®), respectively, as we
find from the similarity solution for small {, equations
(30} and (31).

As { increases for the adiabatic wall case, the wall,
bulk, and interface temperatures increase monotoni-
cally toward a final common value and become closer
and closer to cach other. This steady increase is due to
the fact that the heat of absorption is not being removed
from the system. With the constant temperature wall,
the interface temperature increases slightly, following
the trend of small {, and the bulk temperature attempts
to approach it as heat is conducted from the interface
into the film. Then, both temperatures decrease toward
zero as heat flows out of the system through the wall,
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F1G.2. Dimensionless wall, liquid bulk and interface temperatures as functions of the normalized length { for

Le = 0.001 and 4 = 0.01. Broken lines describe adiabatic wall; solid lines

The interfacial concentration in both cases follows a
trend opposite to that of the interfacial temperature,
since y; = 1 —6; [equation (12)]. The bulk concen-
tration increases in both cases toward a final value
equal to that of y,. It is interesting to note that in the
adiabatic wall case 7 increases with { while y; decreases.
The asymptotic values of the dimensionless tempera-
ture and concentration may be found from the
eigenvalue solution by substituting { — oo inejuations
(13a) and (13b). In the constant temperature wall case,
the dimensionless temperature becomes equal to that of
the wall (6 = 0) and the concentration reaches the
corresponding equilibrium value (y=1). In the
adiabatic wall case the asymptotic temperature reflects
some increase from the initial value [ = A/(Le+ )]
and the corresponding equilibrium concentration

1.0 N T i G B A [
0.8 =

—
o6t

>~ i

,, VLe
0.4

| A+SLe

H i

I !
oz t

constant temperature wall.

[» = Lej(/+ Le)} is lower than the thermodynamically
possible value of 1.

Figures 4 and 5 describe typical temperature and
concentration profiles across the film for typical values
of {. We notice that at small { the gradients of both
quantities are very sharp and their variations arc
limited to a thin layer near the interface. As [ increases.
the effects at the interface diffuse toward the wall and
the gradients become more moderate. There are, in fact.
two boundary layers, one of temperature and one of
concentration, which develop starting from the point of
discontinuity ( =0, = 1). The former develops con-
siderably faster than the latter, as the thermal diffu-
stvity a is larger than the mass diffusion coefficient D.

The effect of the heat of absorption 4 is illustrated in
Figs. 6 and 7 describing the temperature and

E n
0
1072 40 1

@m‘ﬂ 1Lt — L. L

w0 10

F1G.3. Dimensionless wall, liquid bulk and interface concentrations as functions of the normalized length (for
Le — 0.001 and 4 = 0.01. Broken lines describe adiabatic wall ; solid lines describe constant temperature wall
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F1G. 4. Typical profiles of dimensionless temperature and concentration across the film at different values of {
for adiabatic wall, Le = 0.001 and 4 = 0.01.

concentration at the interface and at the wall,
respectively. In the former, each curve represents either
0; or y; when read on the corresponding scale, since 6,
+7v; = 1. We observe that the initial ({ = 0) value of the
interface temperature increases with 4, and that of the
interface concentration decreases, according to the
formulasshownin Figs. 2 and 3. The same is true for the
asymptotic values of temperature and concentration,
respectively, both at the interface and at the wall. Adoes
not seem to have an effect on the distance required for
the boundary layers to develop. Figure 7 indicates
variations in wall temperature and concentration
beginning approximately at the same value of { for all
values of A. At the limit of 1 = 0 (negligible heat of
absorption), §is zero throughout the film,y, = 1forall{

kR

ce

0.6

04

02

and 7y, varies as illustrated in Fig. 7. Under this
condition, the results of our solution reduce to those of
the models for isothermal mass transfer in a laminar
falling film [5]. Also, in this case there is no difference
between the adiabatic and constant temperature wall.

In addition to the results of the present solution for
the adiabatic and constant temperature wall cases, Fig.
6 shows the results of the solution generated by
Grigor’eva and Nakoryakov [13] with the assumption
of a uniform velocity profile (for a constant wall
temperature only). It is evident that the solution [13]
shows the same initial and asymptotic behavior as the
present one. However, the former underpredicts the
length required to achieve a certain temperature or
concentration level by about 40%.

10

08

0.2

F1G.5. Typical profiles of dimensionless temperature and concentration across the film at different values of {
for constant temperature wall, Le = 0.001 and 1 = 0.01.
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~SLUG Flow
SOLUTION

FiG. 6. Dimensionless interface temperature and concentration as functions of the normalized length J{or fe

= 0.001 and different values of 4. Broken lines describe adiabatic wall; solid lines describe constant

temperature wall. The “slug flow” solution Grigor’eva and Nakoryakov [13] for the constant temperature
wall is plotted for comparison.

The effect of the Lewis number is shownin Figs. 8 and
9 describing the temperature and concentration at the
interface and at the wall, respectively. As in Fig. 6, each
curve in Fig. 8 represents either 6, or y,. The initial and
asymptotic behavior are as predicted by the formulas
given in Figs. 2 and 3. An increase in Le leads to a
decrease in 6; and to an increase in y;, at { = 0 for both
cases and at { — oo for the adiabatic wall case. In
addition, Le has an effect on the development of the
concentration boundary layer. The larger Le, the
shorter the distance required for the concentration
changetoreach the wall, as shown by the curvesfor y, in
Fig. 9.

Figure 10 shows the mass flux at the interface, yi;, as a

o8 -

0.6 -

B Y

0.4 —

0.2 k-

>

roX
3

function of { for Le = 0.001 and different values of 4. We¢
observe that under all conditions, the rate of absorption
is lower with an adiabatic wall than with a constant
temperature wall. Initially, at smali {, the curves for the
two cases coincide. For larger (. after the thermal
boundary layer has become fully developed, the heat
removed at the wall enhances the mass transfer in the
constant temperature wall case. The point at which the
solid and broken curves part may serve as a measurc for
the length required for the full development of the
thermal boundary layer. y; tends to 7cro at large { for
both cases.

1t is also observed that increasing ». reduces the mass
flux, as expected. The curve for 4 = 0 describes the case

L
Pe

FiG. 7. Dimensionless wall temperature and concentration as functions of the normalized length | for Le
— 0.001 and different values of i Broken lines describe adiabatic wall; solid lines describe constant
temperature wall.
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FiG. 8. Dimensionless interface temperature and concentration as functions of the normalized length  for 4
=0.01 and different values of Le. Broken lines describe adiabatic wall; solid lines describe constant
temperature wall.

of isothermal mass transfer, in which g; is the largest
possible for the given Le, and where there is no
difference between the adiabatic and constant
temperature wall.

6. HEAT AND MASS TRANSFER COEFFICIENTS

The literature is often somewhat ambiguous with
regard to the definition of heat and mass transfer
coefficients. This is particularly so in problems of
simultaneous heat and mass transfer due to the
coupling between the two processes. Yih and Seagrave
[11] have used two different definitions of the
Sherwood number, one based on (C; — C) and the other

on (C;— C,). Nakoryakov and Grigor’eva [14] have
defined it based on (C, — C,). Tamir and Taitel [5] have
used an additional definition of an average Sherwood
(or Nusselt) number based on a logarithmic mean
concentration (or temperature) difference.

We will define the transfer coefficients based on the
quantity difference which constitute the driving force
for the transfer phenomenon. The coefficient of local
mass transfer from the interface to the bulk of the liquid
is defined through the Sherwood number as

D (Yi‘“ﬂ'

The coefficient of local heat transfer from the interface

hd
Sh="M2_ _H (32)
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FiG. 9: Dimensionless wall temperature and concentration as functions of the normalized length { for 4 = 0.01
and different values of Le. Broken lines describe adiabatic wall ; solid lines describe constant temperature wall.
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F1G. 10. Dimensionless mass flux at the interface as a function of the normalized length { for Le

= 0,001 and

different values of 2. Broken lines describe adiabatic wall; solid lines describe constant temperature wall.

to the bulk of the liquid is defined through the Nusselt
number as
heA Hie

Nu=— = g, (33
T T 0n) 33)
In the constant temperature wall case there is also a
need to consider the heat transfer coefficient from the
bulk of the fluid to the wall. Hence,

Sh

A=10"1 \
Le=1072

Figure 11 describes the Sherwood number as a
function of the normalized length { for different values
of Le and A. Shis very large for small { and decreases
toward an asymptotic value as { increases. We note,
first, that for each set of conditions, Sk is greater with a
constant temperature wall than with an adiabatic wall.
The reasons for this are the same as those discussed in
relation to g, (Fig. 10). The behavior in the two cases 15
the same for small {, and the discrepancy beging when
the thermal boundary layer has reached the wall,
increasing with {.
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Fi1G. 11. Local Sherwood number as a {unction of the normalized length { for different values of Le and .
Broken lines describe adiabatic wall; solid lines describe constant temperature wall.
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In the case of a constant temperature wall, the effect
of Aon Shissmall. For fixed 4, Shis larger for smaller Le,
contrary to what may be expected. This is so due to the
fact that while the mass flux y; increases with Le, the
driving force (y;—7) increases even faster. A smaller
Lewis number requires a larger distance for the
concentration boundary layer to become fully
developed. For all combinations of 4 and Le, the
Sherwood number for a constant temperature wall
tends to an asymptotic value of 3.45.

In the case of the adiabatic wall, increasing A reduces
Shsignificantly for all values of Le. A larger Aleads toa
greater deviation from the constant temperature wall
behavior, this deviation shrinking to zerofor 4 = 0. For
fixed 4, a larger Lewis number results in a smaller
deviation. Unlike with the constant temperature wall,
the asymptotic value of Sh depends on A and Le,
decreasing with the former and increasing with the
latter.

The variations of Nu and Nu' with { are illustrated in
Fig. 12, and are considerably less marked than that of
Sh. In the initial region of development of the thermal
boundary layer, Nu decreases in the same manner for
the adiabatic and for the constant temperature wall
cases. In this region, Nu' is zero, as the effects at the
interface have not reached the wall. Beyond that region
there is little variation in Nu, which tends to the
asymptotic values of4.23 and 2.65 for the adiabatic and
constant temperature wall, respectively. Nu' reaches an
asymptotic value of 1.60. The above behavior is
practically unaffected by A and Le for a wide range of
values of these parameters.

The results of the “slug flow” model by Grigor’eva
and Nakoryakov [13] show the same general behavior,
but the actual values of the coefficients deviate by about

103

369

20% from those of the present analysis. With the
assumption of a uniform velocity profile and a constant
temperature wall, the asymptotic value of Shis 3.00,and
that of both Nu and Nu' is 2.00.

7. CONCLUSIONS

A model was developed for analysis of the combined
heat and mass transfer processes in absorption of vapor
in laminar liquid films. The energy and diffusion
equations were solved with an equilibrium boundary
condition at the vapor-liquid interface. Two cases of
practical importance were considered—a constant
temperature wall and an adiabatic wall. Two methods
of solution (analytical and numerical) were used with
very good agreement between their respective results.
The solution was carried out for a linear absorbent-—a
mixture with a linear temperature-concentration
equilibrium relation and a constant heat of absorption.
The techniques of solution are suitable, however, for
non-linear absorbents with given characteristics.

The results of the solution describe the development
of the thermal and concentration boundary layers and
the variation of the temperatures, concentrations, and
heat and mass fluxes. These quantities in their
normalized, dimensionless forms depend on two
characteristic parameters of the system: the Lewis
number Le and the dimensionless heat of absorption A.
The length in the direction of flow is normalized with
respect to the Peclet number and the film thickness. In
the constant temperature wall case, the dimensionless
temperature and concentration reach asymptotic
values of Oand 1, respectively. In the adiabatic wall case
the asymptotic temperature and concentration are
Af{A+ Le) and Le/(A+ Le), respectively.
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FiG. 12. .Loc'al Nusselt number as a function of the normalized length ¢. The curves are practically unaffected
by variationin Lebetween 1072 and 10~ 2, and by variationsin A between 10~ 3 and 10~ !. Broken lines describe
adiabatic wall; solid lines describe constant temperature wall.
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Heat and mass transfer coefficients for the system
were calculated. The Sherwood number for mass
transfer from the vapor-liquid interface to the bulk of
the film reaches an asymptotic value of 3.45, with fully
developed boundary layers for the constant tempera-
ture wall. Lower values are obtained with an adiabatic
wall. The Nusselt number for heat transfer from the
interface to the bulk reaches under the same conditions
values of 4.23 and 2.65 for the adiabatic and constant
temperature wall, respectively. The Nusselt number for
heat transfer from the bulk to the wall reaches 1.60.
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TRANSMISSION SIMULTANEE DE LA CHALEUR ET DE LA MASSE AU COURS
DE LEUR ABSORPTION PAR UNE MINCE COUCHE LIQUIDE
DONT L’ECOULEMENT EST LAMINAIRE

Résumé - Cet article présente une analyse théorique du processus de transmission combinée de chaleur et de

masse ayant lieu lors de I'absorption d’un gaz ou d’une vapeur dans une mince couche liquide laminaire. Les

équations d’énergie et de diffusion sont résolues simultanément pour déterminer les variations de température

et de concentration au point de Uinterface gaz-liquide et au contact de la surface sous-jacente. Deux cas

particuliérement intéressants sont traités : une condition isotherme et une cloison adiabatique. On en conclut

que les chiffres de Nusselt et Sherwood dépendent des chiffres de Peclet et Lewis aussi bien que des propriétés
d’équilibre des matiéres employées.

GLEICHZEITIGER WARMEUBERGANG UND STOFFAUSTAUSCH
BEI FILMABSORPTION MIT LAMINARER STROMUNG

Zusammenfassung- - Die vorliegende Arbeit beschreibt eine theoretische Analyse des Wirmetbergang-

Stoffaustauschvorgangs, der bei der Absorption eines Gases oder Dampfes in einen laminaren fllissigen Film

stattfindet. Die Energie- und Diffusionsgleichungen werden gleichzeitig aufgeldst, damit die Temperatur- und

Konzentrationsinderungen an der Grenzfliche zwischen Flissigkeit und Gas und an der Wand ermittelt

werden konnen. Zwei interessierende Fille werden betrachtet: eine konstante Temperatur und eine

adiabatische Wand. Es wird festgestellt, daB die Nusselt- und Sherwood-Zahlen von den Peclet- und Lewis-
Zahlen sowie von den Gleichgewichiskennzahlen der Arbeitsstoffe abhangen.
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COBMECTHOE PACCMOTPEHUE TENJIOOTAAYH KM NMEPEHOCA BEIIECTB
MPU NMJIEHOYHOM MNOrJIOMEHHUHU C TAMUHAPHBIM ITOTOKOM

Annorauns — Hacrosimuas pabota npeacrasnser co6oil TeOpeTHYECKHI aHANN3 COBMECTHBIX I1POLIECCOB

TEMIOOTAAYH M TNEPEHOCa BelLeCTB NPH MOIJIOWEHHH ra3a WIH TapoB B JAMMHADHYIO XHIKYIO

feHKy. YpaBHeHus Heprud H Audrpy3uM PpeELIAOTCS COBMECTHO, B PE3YNIbTATE 4YEro MOJIYYaIOTCH

BEMYMHbI KOseOaHMs TEMOEPATYPbl M KOHIEHTpPAUMH Y MOBEPXHOCTH pasjieNla HAKOH W ra3oBoM

da3 M y creHku. PaccMaTpuBaloTcsi [Ba Cily4as—IOCTOSHHOH TeMNepaTypsl W anuabaTHueckoi

crenxu. Oxasbisaercs uto Hyccensta wncno u llepByna umucno 3aBHcAT kak oT uucna [lexite u
yucna JIblonca, Tak ¥ OT PABHOBECHBIX CBOHCTB PabOYHX BELIECTB.
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