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(Received 2 June 1982 and in~~~l form 26 July 1982) 

Abstract-This paper describes a theoretical analysis of the combined heat and mass transfer process taking 
place in the absorption of a gas or vapor into a laminar liquid film. The energy and diffusion equations are 
solved simultaneously to give the temperature and concentration variations at the liquid-gas interface and at 
the wall. Two cases of interest are considered : a constant temperature and an adiabatic wall. The Nusselt and 
Sherwood numbers are found to depend on the Peclet and Lewis numbers as well as on the equilibrium 

characteristics of the working materials. 

coefficients in equations (13a) and (13b); 
coefficients in equations (19) and (20) ; 
concentration ofabsorbate in solution [mol 
mm3 solution] ; 
equilibrium concentration of solution at 
temperature T, with vapor at pressure P, 
[mol mm3 solution] ; 
interfacial concentration of absorbate in 
solution [mol m- 3 solution] ; 
initial concentration of absorbate in 
solution [mol mm3 solution] ; 
constants in equation (11) ; 
specific heat of liquid [J kg- ’ “C- ‘1; 
diffusion coefficient of absorbate (substance 
KI) in solution [m” s- ‘1; 
eigenfunctions in equations (13a) and (13b); 
heat of absorption of substance II in 
solution [J mol- ‘f ; 
partial molal enthalpy of substance II at 
interface [J mol- ‘1; 
mass transfer coefficient from interface to 
bulk [m s- ‘1; 
heat transfer coefficient from interface to 
bulk [W me2 Y-i]; 
heat transfer coefficient from bulk to wall 

CWm -2 “c-‘I; 
enthalpy of vapor in contact with film 
[J mol-‘1 ; 
thermal conductivity of liquid [W m-l 
“c- ‘1; 
Lewis number, D/cc; 

mass flux of absorbate into absorbent at 
interface [mol m ~’ s - i] ; 

Nu, Nu’, Nusselt numbers, h,A/D and hrA/D ; 
Pe, Peclet number, CA/cc; 

P”, vapor pressure of absorbate (substance II) 
in the gas phase [Pa] ; 

P “09 vapor pressure of absorbate (substance II) 
in solution at concentration C, and 
temperature T, [Pa] ; 

Y&v* normalized heat &IX, [a@/+], = e ; 
Sk Sherwood number, ~~A/~ ; 
T, temperature of solution PC] ; 

NOMENCLATURE equilibrium temperature of solution at 
concentration Co with vapor at pressure P, 

c”c1; 
interfacial temperature of solution PC] ; 
initial temperature of solution YC] ; 
flow velocity Em s- ‘1; 
average flow velocity [m s- ‘1; 
normalized velocity, equation (6); 
coordinate in direction of flow [m] ; 
coordinate in direction perpendicular to 
flow [ml. 

Greek symbols 
thermal diffusivity of liquid [m2 s- ‘1; 
eigenvalues in equations (13a) and (13b); 
normalized concentration, equation (6); 
normalized concentration at interface, wall 
and bulk, respectively; 
film thickness [m] ; 
normalized coordinate in direction of flow, 
equation (6); 
normalized coordinate perpendicular to 
flow, equation (6) ; 
(1 -q), equation (27); 
normalized temperature, equation (6); 
normalized temperature at interface, wall 
and bulk, respectively; 
normalized heat of absorption, equation 
(10); 
normalized mass flux at interface, equation 
(10); 
density of liquid [kg mm 3], 

1. INTRODUCTION 

ABSORPTION of gases and vapors in liquids are 
encountered in numerous applications in the chemical 
technology. These processes normally involve simul- 
taneous heat andmass transfer in thegas-liquid system. 
The heat of absorption gives rise to temperature 
gradients leading to the transfer of heat; the 
temperature influences the vapor pressure- 
concentration equi~brium between the two phases 
which in turn affects the exchange of mass. 
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The combined heat and mass transfer process does 
not lend itself easily to mathematical analysis. Many 
studies of absorption problems described in the 
literature have considered the heat and the mass 

transfer separately, neglecting the coupling between 
them. Fortunately. in many real cases the heat 
interaction is small and the process may be considered 
isothermal. In some processes, however, the effect of 

heat transfer is important and cannot be neglected. A 
typical example is when the absorbate is a vapor with 
high heat of absorption, such as water. Furthermore, 

there is growing interest in processes where mass 
transfer is initiated specifically to produce a 
temperaturechange. Onesuch example,from which the 
present study originated, is in absorption heat pumps 

for heating and cooling. There, the heat transfer 
accompanying the mass transfer is of primary 
importance. 

The gas liquid contactors in which absorption takes 

place are typically spray, trayed, or packed towers. Of 
particular interest are systems involving falling liquid 
films, which have found wide application in modern 
equipment. A considerable number of studies have 

been performed on gas absorption in liquid films with 
different flow regimes, geometries, and boundary 
conditions. Chien and Ibele [l] gave a comprehensive 
survey on the hydrodynamics offallingfilms. Vyazovov 
[2] formulated, as early as 1940, a simple model for 
isothermal absorption in a falling film, which was 
shown by comparison with experimental results to 
provide rough estimates for the mass transfer 
coefficients. Improved and more elaborate models have 
been developed since. Olbrich and Wild [3] provided a 
solution to the diffusion equation in laminar flow for 

several falling film geometries. The solution, in the form 
of a series of eigenfunctions, includes ten eigenvalues 
and coefficients. Rotem and Neilson [4] added to the 
laminar solution the diffusion in the direction of How, 
which turns out to be negligible for large enough Peclet 
numbers. Tamir and Taitel [5] extended the laminar 
flow solution to cases involving interfacial resistance. 

Chavan, Mechelkar and Karanth [6, 71 considered 
absorption in non-Newtonian liquids. Sandal1 and co- 
workers [8 lo] studied turbulent flows. The common 
feature to all the above studies is their dealing with mass 

transfer only. under conditions where heat transfer has 

no effect. 
Only recently has some work been published on 

combined heat and mass transfer in falling films. Yih 

and Seagrave [l l] analyzed a laminar flow problem 
and studied the effect of a temperature gradient on the 
absorption process. Neglecting temperature variations 
in thedirectionofflow, theyessentiallyassumedalinear 
temperature profile across the film thickness. The 
temperature variation in their model influenced the 
process through its effect on the physical properties of 
the liquid. Nakoryakov and Grigor’eva [12] used a 
similar approximate approach and assumed also a 
linear temperature profile across the film. However, in 
their model temperature variations in the direction of 

llow were not neglected. Two later and impr<J\ed 
models [13, 141 by the same authors calculated. rathe; 
than assumed, the actual shape of the temperature 
profile, which led to more accurate results. In ref. 1 1 <: 
an eigenfunction series solution is given for I he coupled 
diffusion and energy equations with an imperm~ahl~ 
constant temperature wall and dn qtiilihriirn! 

boundary condition at the liquid vapor interface 1:: 
ref. [14] an analytic solution was ohtaincd ror !I:, 
temperature and concentration variation IKLI ti~c 

entrance region. The main limitation of the models [! .(. 
141 is their being based on the assumption ofa umform 
velocity profile in the film, whereas the actual veloc~ It 
profile in laminar flow is parabolic. This assumptro~~ 
leads to a deviation of about 20’:,; in the heat and IL~:,~ 
transfer coefficients and to underprediction bq :IDOU~ 
40”,, of the distance required for bounclar~ 1;~) (‘I 
development. Also, the models [ 13. 14-J are restricicrl tc; 

a constant temperature wall. 
This paper presents an attempt to improve upon ~!l:s 

models described earlier and eliminate some 01’ tha;l, 
limitations. The model, for a falling him of ahsorbcn! 
solution in laminar How, aims at the calculation of thi, 
heat and mass transfer coefficients for typlc;li wail 
conditions and finding their dependence III\ !h:. 

system’s parameters. 

2. MODEL AND EQL’A’l‘lONb 

The system analyzed in the present study is desk beJ 
schematically in Fig. 1. A film of liquid solution. 

composed of substances I (absorbent) and ii 
(absorbate), flows down over an inclined plant. 
Substance I always remains in the liquid phase; 
substance II may be absorbed into the solution. The 
film is in contact with stagnant vapor ofsubstance II at 
constant pressure P,. At x = 0. the liquid solution is at :f 
uniform temperature T, and composition C,, (molts of 
II per unit volume of solution) corresponding lo ail 
equilibrium vapor pressure P,, different from P, A\ .i 
result of this difference, a mass transfer process take-. 
place at the liquid-vapor interface. The substance 
absorbed at the interface diffuses into the film : the hcnt 
generated in the absorption results in a simultaneouc 

f‘ 
VAPOR OF Sd%TANCE II 

AT CONSTANT PRESSURE ra, 

SOLUTION 
OF SUBSTANCES 

I ANDYI 

FIG. I. Description offalling film of absorbent m contact with 
absorbate. Typical profiles of velocity. temperature. anti 

concentration are shown. 
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heat transfer process. Two cases ofpractical interest are 
considered: in one, the wall is kept at a constant 
temperature T,; in the other, the wall is adiabatic. 

The flow of the liquid film is assumed in this study to 
be laminar, 1 -dim., and fully developed throughout. No 
shear forces are exerted on the liquid by the vapor. The 
film thickness can be easily determined from the mass 
flow rate,density, viscosity, and angle ofinclination [ 11. 
The velocity profile, shown in Fig. 1, is parabolic and 
given by 

where zi is the average flow velocity, equal to the mass 
flow rate per unit breadth, divided by the density and 
film thickness. 

In formulating this model, the follow~g ~sumptions 
have been made : 

(1) The liquid solution is Newtonian and its physical 
properties are constant and independent of tempera- 
ture and concentration. 

(2) The mass of vapor absorbed per unit time is small 
compared to the mass flow rate of the liquid. Therefore, 
it is assumed that the latter is constant, and so are the 
film thickness and average flow velocity. 

(3) There is no heat transfer in the vapor phase. 
(4) There are no natural convection effects in the film 

due to temperature or concentration differences (this 
assumption is in fact a corollary of the first one). 

(5) Diffusion thermal effects are negligible, 
(6) Vapor pressure equilibrium exists between the 

vapor and liquid at the interface. 
Under the above assumptions, the simultaneous heat 

and mass transfer in the system at steady-state is 
described by the energy and diffusion equations : 

ar a27- 
yg=:@v 

ac a2c 
u-=:D- 
ax ay2 

(2) 

where diffusion and heat conduction in the x-direction 
have been neglected with respect to those in the y- 
direction. The following boundary conditions apply : 

T = To and C = C, at x = 0, (4a) 

ac 
-_=O 

ay 

i 

T = To 
Of 

aTjay = 0 

for constant temperature 
at y = 0, 

wall 
for adiabatic wall 

(4b) 

T = K and C = Ci at y = A. (4c) 

Here q and Ci are the interfacial temperature and 
concentration, both unknown functions of x. They are 
related to each other and to the interfacial mass flux ni, 

also unknown, by the following three conditions : 

F(& CJ = P, = const., (5a) 

qac/ay) = ni at y = A, (5b) 

&X’/ay) = n,R,(T, Ci) at y = A (5c) 

where R, is the heat of absorption (per mole of the 
vapor) in the liquid. Equation (5a) represents the 
condition of vapor pressure equilibrium at the 
interface; equations (5b) and (5~) describe the mass and 
heat fluxes, respectively, at the interface. The heat of 
absorption is defined as 

R, = &n - H,,(C, T) (5d) 

where &,, is the enthalpy (per mole) of the vapor in 
contact with the film and fl,, is the partial molal 
enth~pyofsubstanceIIat theinterface.~~~isafunction 
of the interfacial tem~rature and con~ntration 
whereas hr, is independent of them. The definition (5d) is 
more rigorous than the one sometimes found in the 
literature, where R, is expressed in terms of the latent 
heat of vapori~ation/condensation of substance II at 
temperature Y&less the differential heat ofdilution. This 
definition would be correct ifthe vapor was saturated at 
a temperature equal to that of the liquid interface. This 
is generally not the case, nor is it so in the present 
problem. 

The typical shapes of the temperature and 
concentration profiles in the film are depicted in Fig. 1. 
Before proceeding with the solution, it would be useful 
to rewrite the equations in a dimensionless form. Let us 
define the new variables 

(6b) 

T-T, C-C, 
Q=----_. ~ 

T, - To ’ y = c,-c, 
(64 

where T. is the equilibrium temperature of the solution 
at concentration C, with the vapor, and C, is the 
con~ntration of the solution at temperature T, in 
equilibrium with the vapor. T, and C, both have a 
physical significance: q is the temperature which 
would be reached in the film if thermodynamic 
equilibrium could be achieved without change in 
con#ntration; C, is the concentration that would be 
reached if thermodynamic equilibrium could be 
achieved without change in temperature. Both are 
limiting cases to what actually happens in the 
simultaneous heat and mass transfer process. 

Equations (2) and (3) with the new dimensionless 
variables become 

ao a20 
"Z'&T (7) 

a!z=Lcz? 
8~ arlz 

(8) 

where Le is the Lewis number. The boundary 
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conditions now have the dimensionless form 

fI = 0 and ;; = 0 at l = 0. (9a) 

C 
= 0 

in 
1 

I 

0 := 0 for constant temperature 
at 11 = 0, 

0 r wall 
ill):&/ = 0 for adiabatic wall 

(9b) 

0 = (Ii and 1’ = yi at n = 1 (9c) 

where (Ii and yi are the dimensionless interfacial 
temperature and concentration, both unknown 
functions of [, which are related to each other as 

follows : 

,f((I,. ;+) = 0 (equilibrium condition), (IOa) 

at q = I. (10~) 

Here pi is the dimensionless mass flux from the vapor to 

the film and ;I is the dimensionless heat of absorption, 
which is a function of Ui and yi. 

The problem is now well defined mathematically in 
terms of the two second order differential equations (7) 
and (8) and the boundary conditions (9) for the 
unknown distributions of 0 and y with < and q. The 
boundary conditions are given in terms of two 
additional unknowns, Oi and yi, which are determined 
along with pi from the three additional equations (10). 

As has been stated earlier, the two cases for which the 
present model was developed (constant temperature 
and adiabatic wall) are of practical interest in actual 
working systems. The former simulates a process where 

the liquid is constantly cooled during absorption, such 
as in absorption chillers and heat pumps. The other is 
representative of a case where this process occurs 
without cooling, such as in many gas-liquid contactors. 
We have assumed here that the constant temperature 
wall is at a temperature T0 equal to that of the entering 
solution. If this is not the case, the results will vary 
somewhat due to an additional pure heat transfer 
process between the wall and the film near the entrance 
region [ 141. Also, the adiabatic wall may be considered 
as a particular case of the more general constant heat 
flux condition. 

3. THE, LlNEAR ABSORBENT 

In order to proceed with the solution, it is necessary 
to know the equilibrium relation between the 
temperature, composition, and vapor pressure of the 
specific liquid absorbent being used. This relation, 
expressed in a dimensionless form for the parameters at 
the interface, yields equation (lOa). In addition, it is 

necessary to express the dimensionless heat or 
absorption /1 in terms of0, and ‘ii for the given materrals. 
Data on equilibrium properties have been compiled 
from experimental and theoretical studies and arc 
available in the literature for many liquid vapor. 
combinations. 

A universal relation between the temperature. 
concentration, and vapor pressure in equilibrium can 
be formulated which would fit it large number of 
absorbents within a limited range of the preceding 
parameters. This relation indicates a linear dependence 

between the temperature, the concentration, and the 
logarithm of the vapor pressure. A thermodynamic 
justification for this relation, limited to clectrolyti,. 

solutions. has been given [iS], and was based on the 
definition of the osmotic coefficient and the Clapcyron 
equation. However, similar behavior is exhibited by 
some other, non-electrolytic, absorbents. The validit\ 
of the linear relation was checked for two common 
absorbents. LiBr-H,O and LX--H,O. and found to be 
very good under the above limitations for- a wide range 
of temperatures and concentrations. 

The heat of absorption has been defined as the 
difference between the enthalpy of the vapor ht, and the 
partial molal enthalpy of substance II in the liquid rf,, 

[equation (5d)]. h,,, which is independent of thgz 
interfacial temperature and concentration, is often 
considerably larger than I?,,. This is so particularly with 
vapor of low molecular weight such as H,O. In those 
cases. the dependence of/r on (Ii and ,‘i is very weak, 

We will define a linear absorbent as a material having 
the following two properties 

(I) The relation between the temperature and 
concentration in equilibrium with vapor at constant 
pressure is linear, of the form : 

and 
(2) The heat of absorption is constant and 

independent of the temperature and concentration. 

In terms of the dimensionless variables defined in 
equations (6~) and (10~) these two conditions become 

and 

i = const. (lib! 

4. soL.t:TIoN 

Two different methods of solution were used to 

obtain the temperature and concentration distri- 
butions in the film: an analytical and a numerical 
method. A linear absorbent was assumed in both cases. 
and the results of the two methods were in excellent 
agreement. The equations in effect are equations (7) and 
(8) with the boundary conditions (9a) and (9b) at the 
entrance plane and the wall, respectively. The condition 
(9~) at the interface becomes. for the case of a linear 
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absorbent, 

f3+y=l and 
ae 
-=A? at r]=l. (12) 
aq aq 

4.1. Analytical solution 
The approach to the solution is similar to the one 

employed in ref. [13] for the case with the uniform 
velocity profile. Using the Fourier method, we write a 
separation-of-variables solution for equations (7) and 
(8), in the form of two infinite series of eigenfunctions, as 
follows : 

0 = A,F,(rf)e-“:c, (134 
“=l 

y = l- c B,G,(~)e-B~S (13b) where, using the boundary condition (16b), we find 

where c(, and /I, are the eigenvalues corresponding to 
the eigenfunctions F, and G,, respectively. The 
boundary conditions (12), which must be satisfied at 
any [, indicate that for every n, 

a, = B.. 

Substituting equations (13a) and (13b) into equations 
(7)and(8), weobtain thefollowingtwoequationsfor the 
eigenfunctions : 

d2F 
2 +%(2q-q2)a,ZF, = 0, 
dv2 

d2G, 

w 
+3(2q-rj’)gG, = 0, 

(14) 

(15) 

with the boundary conditions at thewall, resulting from 
equations (9b) : 

G”(0) = 0 (16a) 

F:(O) = 0 for adiabatic wall, or F(0) = 0 for constant 
temperature wall. (16b) 

Another boundary condition to be satisfied by 
equations (14) and (15) is condition (12) at the interface, 
which yields 

M,(l) = KG,(l), (17a) 

A”F”( 1) = - ns”c”( 1). (17b) 

We note that equations (17a) and(l7b) for A, and B, are 

homogeneous and have a solution only if the 

determinant equals zero, i.e. if 

KU) _ _l G:(l) 
F,(l) G,(l)’ 

(18) 

which is the condition for determining the eigenvalues 
CL, once a solution is obtained for F, and G,. The 
coefficients A,, and B, can then be determined from the 
boundary condition (9a) by means of a Sturm-Liouville 

orthogonality condition at [ = 0. 
A power series solution to equation (14) may be 

written in the form 

F,(V) = f an,iVi (19) 
i=O 

a,,, = 1, n,,, = 0, an,2 = 0, an,3 = -a,212 
for adiabatic wall 

a,,, = 0, a,,, = 1, a,,, = 0, 4.3 = 0 

for constant temperature wall (19a) 

u,,~ = $a,Z(a,,i_,-2a,,i_,)/i(i- 1) 

for i > 4, both types of wall. 

Similarly, the solution to equation (15) may be written 

as 

G.(n) = f b,,iV’ (20) 
i=O 

where we find, with the aid of boundary condition (16a), 

b,,, = 1, b,,, = 0, b,,, = 0, b,,, = -a,2/2Le 

b _ 3 ai (bv,i-,-2bn,i-A 
“’ 2 Le i(i- 1) 

for i > 4. (2Oa) 

The eigenvalues are the roots of equation (18). An 

algorithm may therefore be employed where a guessed 
value of a, is used in equations (19a) and (20a) to 
calculate the terms of the series a,,, and b,,i, and, hence, 
the eigenfunctions F,( 1) and G,( 1). The results are then 
substituted into equation (18). If the latter is not 
satisfied, a different guess is taken until convergence is 
obtained. 

Table 1 lists the first nine eigenvalues for a set of 

typical values of the parameters, Le = 0.001 and 
1 = 0.01. The table also shows the corresponding 

Table 1. Eigenvalues and coefficients for typical values of the parameters: 1 = 0.01, Le = 0.001 

n % 

1 0 
2 0.10225 
3 0.19871 
4 0.29605 
5 0.39449 
6 0.49385 
7 0.59395 
8 0.69463 
9 0.79574 

Adiabatic wall Constant temperature wall 
‘%I B” % A” B” 

0.90909 0.90909 0.05765 0.026696 1.3373 
-0.14691 0.18984 0.16052 0.025699 -0.54334 
-0.12830 -0.19710 0.26269 0.026061 0.35597 
-0.10555 0.19098 0.36464 0.026789 - 0.26809 
- 0.08459 -0.17902 0.46640 0.027817 0.21567 
- 0.06756 0.16558 0.56793 0.029115 -0.17983 
-0.05439 -0.15237 0.66916 0.030765 0.15338 
-0.04435 0.14006 0.76997 0.032680 -0.13206 
-0.03667 -0.12886 0.87079 0.035054 0.12027 
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coefficients A, and B,, which must be calculated to 
complete the solution. In order to do this, we have to 
formulate an orthogonality condition at < = 0, which is 
of the Sturm-Liouville type, yet somewhat different 
from the standard form of the latter due to the coupled 

boundary condition (12). 
Consider equation (14) for the eigenfunction F‘,; 

multiplying it by another eigenfunction F, and 
integrating over the range of ;r? yields 

We now return to the boundary condition (9a) and 
using equation (13) we find 

)I 
x A,F,(q) = 0 and i B,&,(p) = 1 (24) 

11~ 1 n- / 

therefore. 

= F,(0)Fb(O) - F,( l)Fr( 1) + 
s 

FkFL dn, (21a) 
0 

similarly 
using the orthogonality condition (23b) 

$CX; 
s 

’ (2~ - n2)F,F, dq 
0 

s 

1 
= F,(O)i$(O) - F”( l)Fa(l) + FbF:, dr/. (21b) 

0 

Subtracting equation (21b) from equation (21a) and 
using the boundary condition (16b), we obtain 

which provides one relation between A,, and H,; a 
second relation is available in either equation (17a) or 
(17b). Solving equations (25a) and (17a) for A, and B,, 

yields 

= F,( l)Fm( 1) - F,( l)F:( 1). (22a) 

Repeating the same with equation (15) for the 

eigenfunction G,, we find 

&+;) 
s 

t(2tl-q2)G,G, dr/ 
0 

= G,(l)G;(l)-G,(l)G:(l). (22b) 

At this point we introduce the coupling between the 
equations, which is where the present orthogonality 
condition differs from the conventional. From 

equations (17a) and (17b) 

F”(l)%(l)--F,(l)FI(l) 

n WL 
= -nAAIG,(l)G~(l)--G,(l)Gb(l)l 

” m 

using this condition to combine equations (22a) and 

(22b) finally yields 

x (Le A,A,F,F, + /1B,B,G,G,) dq = 0 Pa) 

which may be written as 

The analytical solution is now complete. The 
algorithm mentioned earlier makes it possible to obtain 
the first few eigenvalues* from equation (18) without 

difficulty for most values of interest of the parameters. 
This is sufficient for an accurate calculation of B and ; 
for moderate and large values of [ due to the 
exponential terms in equation (13). For small values ot 
<, however, a large number of eigenvalues is required. 
The recursive formulas (19a) and (20a) turn out to be 
unstable for large values of x,, and it is increasingly 
difficult to obtain convergence of the series (19) and (20) 
for the eigenfunctions. An alternative method for 
obtaining the eigenvalues is through a numerical 
integration of equations (14) and (15). Rather than 
doing this, it was found moreefficient to use anumerical 
method for solving the original equations (7) and (8) in 
their partial differential form, which will be described 
next. Yet, the analytical eigenvalue solution is very 
useful for a wide range of the parameters Le and /.. 
where enough eigenvalues can be calculated to cover a 
considerable range of [. For the small <‘s, a similarity 
solution has been obtained similar to the one in ref. 
[ 143, which will also be described over. 

+ iB,B,G,G,) dq 
= 0 for n # m, 

# 0 for n = m. 
(23b) 

It should be noted that this type of “coupled” 
orthogonality condition had been developed and used 

” I 

+ E.B,B,G,G,) dq = 
? 

(2r]-$)iB,G, d,l (25, 
0 

= (2~ -$)iB,G, dy, (25a) 

i76b) 

*The sequence of the eigenvalues is such that a higher II 
corresponds to a larger value of IX,,. 
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4.2. Numerical solution 

The numerical technique used to solve the partial 
differential equations (7) and (8) was based on the so- 
called “method of lines” or “semi-discretization” [ 171. 
The c-n plane of the film was divided into thin strips by 
means of lines parallel to the [ axis. This dis~etizatio~ 
of the q-coordinate made it possible to express the 
second order derivative with respect to q in each of the 
equations in a finite-difference form. Thus, a first order 
ordinary differential equation, in [ alone, was obtained 
along each line. Such an equation could be readily 
solved by means of an available ODE integrator using 
the boundary condition (9a). The integrator selects 
automatically the required step in c and varies it as 
necessary as the integration proceeds. 

Some difficulty in applying this numerical method to 
the entire domain resulted from a singularity at the 
point c = 0, n = 1. This is a singularity of the type often 
encountered in boundary layer problems, and is due to 
a discontinuity in the temperature and concentration 
between the interface and the entrance plane at this 
point. To overcome this problem, an analytical 
solution applicable close to the singular point was 
developed, which made it possible to calculate the 
values of the variables at some finite distance away from 
the point and begin the numerical solution from there. 
The analytical solution is similar to the one used in ref. 
[ 133 and will be described briefly here. 

By defining a new variable 

‘Ii = f-q, (27) 

and recognizing that the term (Zq-1’) is very close to 
unity near the singular point, we can rewrite equations 
(7) and (8) as 

3 ae a20 
2 ag ag' (28) 

E&,~!?I 
ad' (29) 

with the boundary conditions (9b) and (12) now 
applying at ql -+ ix) and q1 = 0, respectively. It is then 
possible to find a similarity variable, combining both [ 
and q,, for each of the equations and convert them from 
partial to ordinary ones. Using the common similarity 
technique, equation (28) becomes 

d20 -= &!!! 
dz’ dz (284 

where z = ~~/(8~/3)“‘. Equation (28a) may be 
integrated twice to give 

0 = k, erf(z) + k, = k, erf [~J(8[/3)“*] + k,. (28b) 

In a similar manner we find from equation (29) 

Y = k, erf CqJ(8Le i/3P21 +k, (29a) 

where k,, k,, k,, and k, are constants of integration. 
Applying the boundary condition (9a) yields k, = - k2 
and k, = -k, since erf(co) = 1. The boundary 
condition (9b) is satisfied automatically for both the 

adiabatic and constant temperature walls. Then, 
applying the boundary condition (12) yields k, + k, = 
- 1 and kl = Ik,/(Le”2)fromwhichall theconstantsof 
integration can finally be determined. We thus obtain 
the following expressions for the dimensionless 
tem~rature and concentrations, in terms of the 
original variables 

0 = Z&(l-erf[~jr’2}, (30) 

y = ~~I-erf[~~“~, (31) 

which are valid for small [, for both the adiabatic and 
constant temperature wall cases. This is to be expected, 
since the effect of the wall cannot be felt until the 
boundary layer developing from the interface has had 
enough distance to fill the entire film thickness. 

The similarity solution for small [ has made it 
possible to use the numerical technique described 
earlier and overcome the problem associated with the 
discontinuity at the point [ = 0, q = 1. In addition, this 
solution is used to complement the eigenvalue solution 
whose usefulness at small 5 was limited by the number 
of obtainable eigenvalues. 

5. RESULTS AND DlSCUSSION 

Figures 2 and 3 describe the general behavior of the 
temperature and concentration in the system as they 
vary with the normalized length [, for a typical set of 
values ofthe parameters Le and 1. Curves are given for 67 
and y at the wall, (e,, y,), the liquid bulk, (8, fi, and the 
liquid-vapor interface, (Q, yJ. The solid lines describe 
the results for the constant temperature wall and the 
broken lines for the adiabatic wall. This notation will be 
maintained for the rest of the curves in this section. 

Initially, for very small <, the behavior is the same for 
the adiabatic and constant temperature wall cases. The 
liquid at the interface reaches thermodynamic 
equilibrium with the vapor immediately upon contact 
at [ = 0, but it takes some distance for the effect to 
diffuse into the film and be felt at the wall. 
Consequently, 8, and yw remain essentiahy zero for 
small i while fli and yi remain almost constant at their 
initial values reached at [ = 0. These values are 
J/(2 +Le*“) and Le”‘/(L+ Le”‘), respectively, as we 
find from the similarity solution for small [, equations 
(30) and (3 1). 

As c increases for the adiabatic wall case, the wall, 
bulk, and interface temperatures increase monotoni- 
cally toward a final common value and become closer 
and closer to each other. This steady increase is due to 
the fact that the heat ofabsorption is not being removed 
from the system. With the constant temperature wall, 
the interface temperature increases slightly, following 
the trend of small i, and the bulk temperature attempts 
to approach it as heat is conducted from the interface 
into the film. Then, both temperatures decrease toward 
zero as heat Bows out of the system through the wall. 
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FE. 2. Dimensionless wall, liquid bulk and interface temperatures as functions of the normalized length ; for 
Le = 0.001 and i, = 0.01. Broken lines describe adiabatic wall; solid lines constant temperature wall. 

The interfacial concentration in both cases follows a 
trend opposite to that of the interfacial temperature. 
since yi = 1 - Bi [equation (12)]. The bulk concen- 
tration increases in both cases toward a final value 

equal to that of yi. It is interesting to note that in the 
adiabatic wall case yincreases with [while yi decreases. 

The asymptotic values of the dimensionless tempera- 
ture and concentration may be found from the 
eigenvalue solution by substituting [ + co in e%uations 
(13a) and (13b). In the constant temperature wall case, 
the dimensionless temperature becomes equal to that of 
the wall (Q = 0) and the concentration reaches the 
corresponding equilibrium value (y = 1). In the 
adiabatic wall case the asymptotic temperature reflects 
some increase from the initial value [B = 1/(Le + A)] 
and the corresponding equilibrium concentration 

10 

08 

06 

x 

04 

02 

3 

L:a = Lrrj(; t Jx)] is lower than the tllel-modynamically 

possible value of 1. 
Figures 4 and 5 describe typical temperature and 

concentration profiles across the film for typical values 
of ;. We notice that at small ; the gradients of both 
quantities are very sharp and their variations arc 
limited to a thin layer near the interface. As <increases. 
the effects at the interface diffuse toward the wall and 
thegradients become more moderate. There are. in fact. 
two boundary layers, one of temperature and one of 
concentration, which develop starting from the point 01 
discontinuity (c = 0. ~1 = 1). The former develops COII- 
siderably faster than the latter. as the thermal diffu- 
sivity x is larger than the mass diffuswn coefficient 1). 

The effect of the heat of absorption E IS illustrated 111 

Figs. 6 and 7 describing the temperature and 

FIG. 3. Dimensionless wall,liquid bulk and interface concentrations as functions of the normalixd lenpth c fol 
Le = 0.001 and E. = 0.01. Broken lines describe adiabatic wall; solid lines describe constant tempcraturr \h ail 
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FIG. 4. Typical profiles of dimensionless temperature and concentration across the film at different values of [ 
for adiabatic wall, Le = 0.001 and 1 = 0.01. 

concentration at the interface and at the wall, 
respectively. In the former, each curve represents either 
Bi or yi when read on the corresponding scale, since Bi 
+ yi = 1. We observe that the initial ([ = 0) value of the 
interface temperature increases with i, and that of the 

interface concentration decreases, according to the 
formulas shown in Figs. 2 and 3. The same is true for the 
asymptotic values of temperature and concentration, 
respectively, both at the interface and at the wall. 3, does 
not seem to have an effect on the distance required for 
the boundary layers to develop. Figure 7 indicates 
variations in wall temperature and concentration 
beginning approximately at the same value of c for all 
values of /1. At the limit of 1 = 0 (negligible heat of 
absorption), 0 is zero throughout the film, yi = 1 for all [ 

06 

and y,,, varies as illustrated in Fig. 7. Under this 
condition, the results of our solution reduce to those of 
the models for isothermal mass transfer in a laminar 
falling film [S]. Also, in this case there is no difference 
between the adiabatic and constant temperature wall. 

In addition to the results of the present solution for 

the adiabatic and constant temperature wall cases, Fig. 
6 shows the results of the solution generated by 
Grigor’eva and Nakoryakov [ 131 with the assumption 

of a uniform velocity profile (for a constant wall 
temperature only). It is evident that the solution [13] 
shows the same initial and asymptotic behavior as the 
present one. However, the former underpredicts the 
length required to achieve a certain temperature or 
concentration level by about 40%. 

/ ‘O 
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FIG. 5. Typical profiles of dimensionless temperature and concentration across the film at different values of c 
for constant temperature wall, Le = 0.001 and 1 = 0.01. 
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FIG. 6. Dimensionless interface temperature and concentration as luncllona of the normalired length j. I;w i., 
= 0.001 and different values of i. Broken lines describe adiabatic wall; solid lines describe c~mstant 
temperature wall. The “slug flow” solution Grigor’eva and Nakoryakov 1131 for the constant tcmprraturo 

wall is plotted for comparison. 

The effect of the Lewis number is shown in Figs. 8 and 
9 describing the temperature and concentration at the 
interface and at the wall, respectively. As in Fig. 6, each 
curve in Fig. 8 represents either Oi or yi. The initial and 
asymptotic behavior are as predicted by the formulas 

given in Figs. 2 and 3. An increase in Le leads to a 
decrease in Oi and to an increase in yi, at [ = 0 for both 
cases and at c + CC for the adiabatic wall case. In 
addition, Le has an effect on the development of the 
concentration boundary layer. The larger Le, the 
shorter the distance required for the concentration 
change to reach the wall, as shown by the curves for 7, in 

Fig. 9. 
Figure 10 shows the mass flux at the interface, pi, as a 

06 

02 c 

0 

i0 -2 

functionof< for Lx = 0.001 and different ~valuesuii, WC 
observe that under all conditions, the rate of absorption 
is lower with an adiabatic wall than with a constant 

temperature wall. Initially. at small c. the curves for the 
two cases coincide. For larger <. after the thermal 
boundary layer has become fully developed, the heat 
removed at the wall enhances the mass transfer in the 
constant temperature wall case. The point at which tht: 
solid and broken curves part may serve as a rneasurc for 
the length required for the full development of the 
thermal boundary layer. /ii tends to Icro at large ; for 
both cases. 

It is also observed that increasing /. reduces the mass 
fux, as expected. The curve for i = 0 describes the case 

IO' 10' 

t .x1 
’ -GPe 

F‘IG. 7. Dimensionless wall temperature and concentration as functions of the normalized length _ for I.1 
= 0.001 and different values of i. Broken lines describe adiabatic wall; solid lines describe constant 

temperature wall. 
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of isothermal mass transfer, in which pi is the largest 
possible for the given Le, and where there is no 
difference between the adiabatic and constant 
temperature wall. 

6. HEAT AND MASS TRANSFER COEFFICIENTS 

The literature is often somewhat ambiguous with 
regard to the definition of heat and mass transfer 
coefficients. This is particularly so in problems of 
simultaneous heat and mass transfer due to the 
coupling between the two processes. Yih and Seagrave 
[11] have used two different definitions of the 
Sherwood number, one based on (Ci - c) and the other 

x 

06 

FIG. 8. Dimensionless interface temperature and concentration as functions of the normalized length i for I 
= 0.01 and different values of Le. Broken lines describe adiabatic wall; solid lines describe constant 

temperature wall. 

on (Ci- C,). Nakoryakov and Grigor’eva [14] have 
defined it based on (C, - C,). Tamir and Taitel [S] have 
used an additional definition of an average Sherwood 
(or Nusselt) number based on a logarithmic mean 
concentration (or temperature) difference. 

We will define the transfer coefficients based on the 
quantity difference which constitute the driving force 
for the transfer phenomenon. The coefficient of local 
mass transfer from the interface to the bulk of the liquid 
is defined through the Sherwood number as 

The coefficient of local heat transfer from the interface 

10 

06 

FIG. 9. Dimensionless wall temperature and concentration as functions of the normalized length [for 1 = 0.01 
and different values of Le. Broken lines describe adiabatic wall ; solid lines describe constant temperature wall. 
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FIG. 10. Dimensionless mass flux at the interface as a function of the normalized length ; for LC 0.W I and 
different values of 2. Broken tines describe adiabatic wall; solid lines describe constant temperature wall. 

to the bulk of the liquid is defined through the Nusselt 
number as 

In the constant temperature wall case there is also a 
need to consider the heat transfer coefficient from the 
bulk of the fluid to the wall. Hence, 

Figure 11 describes the Sherwood number iis ;I 
function of the normalized length [ for different values 
of Le and A. Sh is very large for smalt l and decrease5 
toward an asymptotic value as < increases. We note, 
first, that for each set ofconditions, Sh is greater with a 

constant temperature wall than with an adiabatic wall. 
The reasons for this are the same as those discussed in 
relation to pi (Fig. 10). The behavior in the two cases i.~ 
the same for small <, and the discrepancy begins when 
the thermal boundary layer has reached the wall. 
increasing with ;. 

FIG. 11. Local Sherwood number as a function of the normalized length 5 for different values ul Lr and ,. 
Broken lines describe adiabatic wall: solid lines describe constant temperature wall. 
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In the case of a constant temperature wall, the effect 
of 1 on Sh is small. For fixed a, Sh is larger for smaller Le, 
contrary to what may be expected. This is so due to the 
fact that while the mass flux pi increases with Le, the 
driving force (ri - 7) increases even faster. A smaller 
Lewis number requires a larger distance for the 
concentration boundary layer to become fully 
developed. For all combinations of 1 and Le, the 
Sherwood number for a constant temperature wall 
tends to an asymptotic value of 3.45. 

In the case of the adiabatic wall, increasing I reduces 
Sh si~i~cantly for all values of Le. A larger 1 leads to a 
greater deviation from the constant temperature wall 
behavior, this deviation shrinking to zero for A: = 0. For 
fixed 1, a larger Lewis number results in a smaller 
deviation. Unlike with the constant temperature wall, 
the asymptotic value of Sh depends on 1 and Le, 
decreasing with the former and increasing with the 
latter. 

The variations ofNu and Nu’ with [are illustrated in 
Fig. 12, and are considerably less marked than that of 
Sh. In the initial region of development of the thermal 
boundary layer, Nu decreases in the same manner for 
the adiabatic and for the constant temperature wall 
cases. In this region, Nu’ is zero, as the effects at the 
interface have not reached the wall. Beyond that region 
there is little variation in Nu, which tends to the 
asymptotic values of 4.23 and 2.65 for the adiabatic and 
constant temperature wall, respectively. Nu’ reaches an 
asymptotic value of 1.60. The above behavior is 
practically unaffected by i and Le for a wide range of 
values of these parameters. 

The results of the “slug flow” model by Grigor’eva 
and Nakoryakov [ 133 show the same general behavior, 
but the actual values of thecoeflicientsdeviate by about 

20% from those of the present analysis. With the 
assumption ofa uniform velocity profile and a constant 
temperature wall, the asymptotic value of,% is 3.00, and 
that of both Nu and Nu’ is 2.00. 

7. CONCLUSIONS 

A model was developed for analysis of the combined 
heat and mass transfer processes in absorption of vapor 
in laminar liquid films. The energy and diffusion 
equations were solved with an equilibrium boundary 
condition at the vapor-liquid interface. Two cases of 
practical importance were considered-a constant 
temperature wall and an adiabatic wall. Two methods 
of solution (analytical and numerical) were used with 
very good agreement between their respective results. 
The solution was carried out for a linear absorbent-a 
mixture with a linear temperature-concentration 
equilibrium relation and a constant heat of absorption. 
The techniques of solution are suitable, however, for 
non-linear absorbents with given characteristics. 

The results of the solution describe the development 
of the thermal and concentration boundary layers and 
the variation of the tem~ratures, concentrations, and 
heat and mass fluxes. These quantities in their 
normalized, dimensionless forms depend on two 
characteristic parameters of the system: the Lewis 
number Le and the dimensionless heat of absorption /2. 
The length in the direction of flow is normalized with 
respect to the Peclet number and the film thickness. In 
the constant temperature wall case, the dimensionless 
temperature and concentration reach asymptotic 
values of 0 and 1, respectively. In the adiabatic wall case 
the asymptotic temperature and concentration are 
a/(2 + Le) and &/(a + Le), respectively. 

1 

FIG. 12. Local Nusselt number as a function of the normalized length c. The curves are practically unaffected 
byvariationinLebetween iOm3and 10-2,andbyvariationsinAbetween IO-‘and 10-‘.Brokenlinesdescribe 

adiabatic wall; solid lines describe constant temperature wall. 



Meat and mass transfer coefficients for the system 
were calculated. The Sherwood number for mass 
transfer from the vapor-liquid interface to the bulk of 
the film reaches an asymptotic value of 3.45, with fully 
developed boundary layers for the constant tempera- 
ture wall. Lower values are obtained with an adiabatic 
wall. The Nusselt number for heat transfer from the 

interface to the bulk reaches under the same conditions 
values of 4.23 and 2.65 for the adiabatic and constant 
temperature wall, respectively. The Nusselt number for 
heat transfer from the bulk to the wall reaches 1.60. 
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TRANSMISSION SIMULTANEE DE LA CHALEUR ET DE LA MASSE AU COl!RS 
DE LEUR ABSORPTION PAR UNE MINCE COUCHE LIQUIDE 

DONT L%COULEMENT EST LAMINAIRE 

R&urn& -- Cet article presente une analyse theorique du processus de transmission combinee de chaleur et de 
masse ayant lieu lors de l’absorption d’un gaz ou dune vapeur dans une mince couche liquide laminaire. Les 
equations d’energie et de diffusion sont resolues simuhanement pour determiner les variations de temperature 
et de concentration au point de l’interface gaz-liquide et au contact de la surface sous-jacente. Deux cas 
particulitrement interessants sent trait&s: une condition isotherme et une cloison adiabatique. On en con&t 
que les chiffres de Nusselt et Sherwood dependent des chiffres de Peclet et Lewis aussi bien que des proprietes 

d’bquilibre des matieres employees. 

GLEICHZEITIGER W~RME~BERGANG UND STOFFAUS~AUSCH 
BE1 FlLMABSORPTlON MIT LAMINARER STRC)MUNG 

Zusammenfassung- Die vorliegende Arbeit beschreibt eine theoretische Analyse des Whrmeuhergang- 
Stoffaustauschvorgangs, der bei der Absorption eines Gases oder Dampfes in einen laminaren fliissigen Film 
stattfindet. Die Energie- und Diffusionsgleichungen werden gleichzeitig aufgel&t, damit die Temperatur- und 
Konzentrationsanderungen an der GrenzflHche zwischen Fliissigkeit und Gas und an der Wand ermittelt 
werden konnen. Zwei interessierende FLlle werden betrachtet: eine konstante Temperatur und eine 
adiabatische Wand. Es wird festgestellt, dall die Nusselt- und Sherwood-Zahlen von den Peclet- und Lewis- 

Zahlen sowie von den Gleichgewichtskennzahlen der Arbeitsstoffe abhangen. 
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COBMECTHOE PACCMOTPEHME TEI-IJIOOT~AWI M l-IEPEHOCA BEUECTB 
IIPM I-IJIEHOYHOM fIOrJIO~EHMM C JIAMMHAPHbIM fIOTOKOM 

AHHOTBUIIR- HacTonuar pa6oTa tp3_ICTaBnXT co6oii TeOpeTAveCKAi aHanW3 COBMeCTHbIX npoueccoe 

TennooTnaqR w nepeHoca BeuecTB IIpH nornoueHm4 ra3a mki napoB B narmHapHyt0 xuinKyko 

n,,C"Ky. YpaBHeHHX 3HCpWW R ~H4$y3H&, peX"alOTCfl COBMCCTHO, B pe3yJIbTaTe 'UXO nOJly'fa5OTCK 

BC,,H',HHbl KOJe6aHkin TCMnepaTypbI H KOHUeHTpaUWi y nOBepXHOCTH pa3L,eJla XWlKOii A ra30BOii 

,$a3 H ,' CTeHKH. PaCCMaTp&,BaIOTCS-l LLBa C,Iy'taK--nOCTOKHHOi? TCMnepaTypbl R amia6aTWIeCKOfi 

cTeHKki. OKasbIBaeTcn 9~0 HyCCeJIbTa 4wno bi IIIepayna wcno 3aBmnT KaK 0~ wicna IIeKne ki 

'IHCna flblOoACa, TaK li OT paBHOBeCHbIXCBOkTB pa6owx BelUeCTB. 
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